Máximo común divisor y mínimo común múltiplo

Máximo común divisor

El máximo común divisor, m.c.d. de dos o más números es el mayor número que divide a todos exactamente.

Cálculo del máximo común divisor

1. Se descomponen los números en factores primos.

2. Se toman los factores comunes con menor exponente.

Ejemplo

Hallar el m. c. d. de: 72, 108 y 60.

1.

descomposiciones

72 = 23 · 32

108 = 22 · 33

60 = 22 · 3 · 5

2.

m. c. d. (72, 108, 60) = 22 · 3 = 12

12 es el mayor número que divide a 72, 108 y 60.

Si un número es divisor de otro, entonces éste es el m. c. d.

El número 12 es divisor de 36.

m. c. d. (12, 36) = 12


Mínimo común múltiplo

Es el menor de todos múltiplos comunes a varios números, excluido el cero.

Cálculo del mínimo común múltiplo

1. Se descomponen los números en factores primos

2. Se toman los factores comunes y no comunes con mayor exponente.

Ejemplo

72 = 23 · 32

108 = 22 · 33

60 = 22 · 3 · 5

m. c. m. (72, 108, 60) = 23 · 33 · 5 = 1 080

2160 es el menor número que puede ser dividido por: 72, 108 y 60.

Si un número es un múltiplo de otro, entonces es el m. c. m. de ambos.

El número 36 es múltiplo de 12.

m. c. m. (12, 36) = 36

Relación entre el m. c. d. y m. c. m.

m. c. d. (a, b) · m. c. m. (a, b) = a · b


Ejercicios

Calcular el m. c. d. y m.c.m. de:

1428 y 376

428 = 22 · 107

376 = 23 · 47

m. c. d. (428, 376) = 22 = 4

m. c. m. (428, 376) = 23 · 107 · 47 = 40 232

2148 y 156

148 = 22 · 37

156 = 22 · 3 · 13

m. c. d. (148 , 156) = 22 = 4

m. c. m. (148 , 156) = 22 · 3 · 37 · 13 = 5772

3600 y 1 000

600 = 23 · 3 · 52

1000 = 23 · 53

m. c. d. (600 , 1000) = 23 · 52 = 200

m. c. m. ( 600 , 1000) = 23 · 3 · 53 = 3000


Calcular el m. c. d. y m.c.m. de:

11048, 786 y 3930

Descomposiciones

1048 = 23 · 131

786 = 2 · 3 · 131

3930 = 2 · 3 · 5 · 131

m. c. d. (1048, 786, 3930) = 2 ·131 = 262

m. c. m. (1048, 786, 3930) = 23 · 3 · 5 · 131 = 15 720

23120, 6200 y 1864

Descomposiciones

3210 = 24 · 3 · 5 · 13

6200 = 23 · 52 · 31

1864 = 23 · 233

m. c. d. (3210, 6200, 1864) = 23 = 8

m. c. m. (3210, 6200, 1864) = 24 ·3 · 52 · 13 · 31 · 233 =

= 112 678 800


Un faro se enciende cada 12 segundos, otro cada 18 segundos y un tercero cada minuto. A las 6.30 de la tarde los tres coinciden.

Averigua las veces que volverán a coincidir en los cinco minutos siguientes.

12 = 22 · 3

18 = 2· 32

60 = 22 · 3 · 5

m. c. m. (12 , 18, 60) = 22 · 32 · 5 = 180

180 : 60 = 3

Sólo a las 6.33 h.


Un viajero va a Barcelona cada 18 días y otro cada 24 días. Hoy han estado los dos en Barcelona.

¿Dentro de cuantos días volverán a estar los dos a la vez en Barcelona?

18 = 2 · 32

24 = 23 · 3

m. c. m. (18, 24) =23 · 32 = 72

Dentro de 72 días.


¿Cuál es el menor número que al dividirlo separadamente por 15, 20, 36 y 48 en cada caso dar de resto 9?

m. c. m. (15 , 20, 36, 48) = 24 · 32 · 5 = 720

720 + 9 = 729


En una bodega hay 3 toneles de vino, cuyas capacidades son: 250 l, 360 l, y 540 l. Su contenido se quiere envasar en cierto número de garrafas iguales. Calcular las capacidades máximas de estas garrafas para que en ellas se pueden envasar el vino contenido en cada uno de los toneles, y el número de garrafas que se necesitan.

m. c. d.(250, 360, 540) = 10

Capacidad de las garrafas = 10 l.

Número de garrafas de T 1 = 250 / 10 = 25

Número de garrafas de T 2 = 360 / 10 = 36

Número de garrafas de T 3 = 540 / 10 = 54

Número de garrafas = 25 + 36 + 54 = 115 garrafas.


El suelo de una habitación, que se quiere embaldosar, tiene 5 m de largo y 3 m de ancho.

Calcula el lado y el número de la baldosas, tal que el número de baldosas que se coloque sea mínimo y que no sea necesario cortar ninguna de ellas.

3 m = 30 dm 30 = 2 ·3 · 5

5 m = 50 dm 50 = 2 · 52

A = 30 · 50 = 1500 dm2

m. c. d. (30 , 50) = 2· 5= 10 dm de lado

A b = 102 = 100 dm2

1500 dm2 : 100 dm2 = 15 baldosas


Un comerciante desea poner en cajas 12 028 manzanas y 12 772 naranjas, de modo que cada caja contenga el mismo número de manzanas o de naranjas y, además, el mayor número posible. Hallar el número de naranjas de cada caja y el número de cajas necesarias.

m. c. d. (12 028, 12 772) = 124

124 naranjas en cada caja.

Cajas de naranjas = 12 772 / 124 = 103

Cajas de manzanas = 12 028 / 124 = 97

Cajas necesarias = 103 + 97 = 200


¿Cuánto mide la mayor baldosa cuadrada que cabe en un número exacto de veces en una sala de 8 m de longitud y 6.4 m de anchura? ¿Y cuántas baldosas se necesitan?

8 m = 80 dm 80 = 24 · 5

6.4 m = 64 dm64 = 26

m. c. d. (80, 64) = 24 = 16 dm de lado

A b = 162 = 256 dm2

A = 80 · 64 = 5120 dm2

5120 dm2 : 256 dm2 = 20 baldosas







Cursos de Matemáticas e Inglés